Developing a Model Based on Geospatial Information Systems (GIS) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for Providing the Spatial Distribution Map of Landslide Risk. Case Study: Alborz Province

نویسندگان

چکیده مقاله:

Landslide is one of these natural hazards which causes a great amount of financial and human damage annually allover the world. Accordingly, identification of areas with landslide threat for implementation of preventive measures in order to confront against the instability of hillsides for reduction of potential threats and related risks is very important. In this research a new method for classification of landslide risk according to geographical analysis and uncertainty modeling is presented which is based on data mining in previous events. In order to do so, adaptive neuro-fuzzy algorithm which is adjusted by means of sensitivity analysis is used in inferential basis of proposed model, which analyze landside risk efficiently. The selected region for this study is available lands in Alborz province. In proposed method factors like altitude, petrology, gradient, gradient direction, distance to fault and rainfall which are some of the most serious causes of hillside's instability had been inserted and their raster maps produced in GIS context and stored in georeference database. In the next step, areas prone to landslide had been identified according to findings of proposed model and finally in addition to model evaluation according to validation outputs, another round of validation is done by field monitoring of hih-risk regions and interpretation of provided 3D models. Results show that the proposed model with root mean square error of 0.819 and correlation factor of 0.934 has a relatively high accuracy in classification of landslide risk. In addition in landslide risk geographical distribution map inside studied region, the area of landslide-prone area is the highest with respect to total area of province which shows high-risk of Alborz province against landslides.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

designing unmanned aerial vehicle based on neuro-fuzzy systems

در این پایان نامه، کنترل نرو-فازی در پرنده هدایت پذیر از دور (پهپاد) استفاده شده است ابتدا در روش پیشنهادی اول، کنترل کننده نرو-فازی توسط مجموعه اطلاعات یک کنترل کننده pid به صورت off-line آموزش دیده است و در روش دوم یک کنترل کننده نرو-فازی on-line مبتنی بر شناسایی سیستم توسط شبکه عصبی rbf پیشنهاد شده است. سپس کاربرد این کنترل کننده در پهپاد بررسی شده است و مقایسه ای ما بین کنترل کننده های معمو...

developing a pattern based on speech acts and language functions for developing materials for the course “ the study of islamic texts translation”

هدف پژوهش حاضر ارائه ی الگویی بر اساس کنش گفتار و کارکرد زبان برای تدوین مطالب درس "بررسی آثار ترجمه شده ی اسلامی" می باشد. در الگوی جدید، جهت تدوین مطالب بهتر و جذاب تر، بر خلاف کتاب-های موجود، از مدل های سطوح گفتارِ آستین (1962)، گروه بندی عملکردهای گفتارِ سرل (1976) و کارکرد زبانیِ هالیدی (1978) بهره جسته شده است. برای این منظور، 57 آیه ی شریفه، به صورت تصادفی از بخش-های مختلف قرآن انتخاب گردید...

15 صفحه اول

Voting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems

some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...

متن کامل

Voting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems

some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...

متن کامل

Comparison of autoregressive integrated moving average (ARIMA) model and adaptive neuro-fuzzy inference system (ANFIS) model

Proper models for prediction of time series data can be an advantage in making important decisions. In this study, we tried with the comparison between one of the most useful classic models of economic evaluation, auto-regressive integrated moving average model and one of the most useful artificial intelligence models, adaptive neuro-fuzzy inference system (ANFIS), investigate modeling procedur...

متن کامل

The Use of Fuzzy, Neural Network, and Adaptive Neuro-Fuzzy Inference System (ANFIS) to Rank Financial Information Transparency

Ranking of a company's financial information is one of the most important tools for identifying strengths and weaknesses and identifying opportunities and threats outside the company. In this study, it is attempted to examine the financial statements of companies to rank and explain the transparency of financial information of 198 companies during 2009-2017 using artificial intelligence and neu...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 9  شماره 3

صفحات  185- 200

تاریخ انتشار 2020-02

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

کلمات کلیدی برای این مقاله ارائه نشده است

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023